
but also points to key opportunities for improving
the long-term durability of these effects.
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T CELL EXHAUSTION

The epigenetic landscape of
T cell exhaustion
Debattama R. Sen,1,2* James Kaminski,3* R. Anthony Barnitz,1 Makoto Kurachi,4,5
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Exhausted T cells in cancer and chronic viral infection express distinctive patterns
of genes, including sustained expression of programmed cell death protein 1 (PD-1).
However, the regulation of gene expression in exhausted T cells is poorly understood.
Here, we define the accessible chromatin landscape in exhausted CD8+ T cells and
show that it is distinct from functional memory CD8+ T cells. Exhausted CD8+ T cells
in humans and a mouse model of chronic viral infection acquire a state-specific
epigenetic landscape organized into functional modules of enhancers. Genome editing
shows that PD-1 expression is regulated in part by an exhaustion-specific enhancer that
contains essential RAR, T-bet, and Sox3 motifs. Functional enhancer maps may offer
targets for genome editing that alter gene expression preferentially in exhausted
CD8+ T cells.

T
cell exhaustion—an acquired state of T cell
dysfunction—is a hallmark of cancer and
chronic viral infection (1, 2), and clinical
trials of checkpoint blockade, which aim
to reverse T cell exhaustion in cancer,

have proven strikingly effective (3, 4). Chimeric
antigen receptor (CAR)–T cell therapy has also
proven highly effective for hematologic malig-
nancies (5), but the development of exhaustion
in T cells engineered to treat solid tumors re-
mains a substantial barrier to its broader use
(6). The identification of mechanisms that reg-
ulate exhausted T cells is therefore a major goal
in cancer immunotherapy.
To identify regulatory regions in the genome

of exhausted CD8+ T cells, we used an assay
for transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) (7) to demar-
cate areas of accessible chromatin in mouse

antigen-specific CD8+ T cells differentiating in
response to lymphocytic choriomeningitis virus
(LCMV) infection (fig. S1A and table S1). Acute
LCMV infection elicits highly functional effec-
tor CD8+ T cells, whereas chronic LCMV infection
gives rise to exhausted CD8+ T cells (1–3, 8 , 9).
Analysis of high-quality ATAC-seq profiles (fig.
S1, B to H) from naïve CD8+ T cells and those
at day 8 and day 27 postinfection (p.i.) (d8 and
d27, respectively) revealed that naïve CD8+

T cells underwent large-scale remodeling (Fig.
1A and fig. S2A) during differentiation [as de-
tected by DESeq2, with a false discovery rate
(FDR) < 0.05]. The majority (71%) (fig. S2A) of
chromatin-accessible regions (ChARs) either
emerged (e.g., those at the Ifng locus) or disap-
peared (e.g., Ccr7) (Fig. 1A) as naïve CD8+ T cells
underwent differentiation. The gain and loss of
ChARs were not balanced; a much larger frac-
tion of regions emerged at d8 p.i. and persisted
or emerged only at d27 than were either tran-
siently detected at d8 p.i. or lost from naïve cells
(Fig. 1B). Thus, differentiation from a naïve CD8+

T cell state is associated with a net increase,
rather than decrease, in chromatin accessibility
(fig. S2B).
Comparison of ChARs from exhausted CD8+

T cells with those found in functional effector
or memory CD8+ T cells revealed marked differ-
ences in the pattern of regulatory regions. Dif-
ferential regulatory regions between acute and
chronic infection (Fig. 1C and fig. S2C) showed
features of enhancers: They tended to be depleted
of transcription start sites (TSSs) and enriched
for intergenic and intronic areas (Fig. 1D), and
found distal to gene promoters (fig. S2D). The
magnitude of difference in the profile of regula-
tory regions between exhausted and functional
CD8+ T cells was greater than that seen in gene
expression. We found that 44.48% of all ChARs
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Fig. 1. CD8+ Tcell exhaustion is associated with extensive changes in accessible chromatin. (A) Representative ATAC-seq tracks at the Ccr7 and Ifng
gene loci. (B) Developmental trajectory of new regions at each time point. (C) Overlap in ChARs between cell states. (D) Distribution of nondifferential (left) and
differential (right) regions between acute and chronic CD8+ T cell states. TSS, transcription start site. (E) Correlation network of similarity between states
measured by gene expression (left) and chromatin accessibility (right). Edge length corresponds to similarity (Spearman correlation).

Fig. 2. State-specific enhancers in CD8+ T cells form modules that map to functionally distinct classes of genes. (A) Heat map of peak intensity
for all differentially accessible regions (rows) clustered by similarity across cell states (columns). Shown are normalized numbers of cut sites
(supplementary methods), scaled linearly from row minimum (white) to maximum (purple). (B) Heat map showing row-normalized average mRNA
expression of neighboring genes within each module in (A) in each cell state. Informative genes from each module are shown on right. (C) Heat map
showing enrichment of Gene Ontology (GO) terms (rows) in each module (columns). P-values (hypergeometric test) presented as –log10.
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were differentially present between functional
and exhausted cells at each time point, com-
pared with only 9.75% of differentially expressed
genes (both values estimated at FDR < 0.05).
Consistent with this, the rank correlation between
each T cell state by gene expression was much
higher than at the level of regulatory regions
(Fig. 1E). Thus, state change during CD8+ T cell
differentiation is accompanied by a larger reor-
ganization of accessible chromatin than is ap-
parent by examination of gene expression.
Unsupervised clustering identified “modules”

of differential ChARs with similar patterns of
activity across T cell states (Fig. 2A and fig. S3A).
We found a highly significant positive correlation
between the average peak intensity of ChARs

within each module and the average gene ex-
pression of the adjacent genes (F test, P < 0.001)
(Fig. 2B and fig. S3B). This suggests that, on
average, the ChARs contained in each module
tended to be associated with the activation,
rather than repression, of corresponding genes.
Genes adjacent to ChARs in each state-specific

module included many with known functions in
the corresponding T cell state. For example, mod-
ule d, active in mouse T cells experiencing chronic
LCMV infection on d8 and d27 p.i., contained
ChARs adjacent to the inhibitory receptors Pdcd1
and Havcr2 (which encodes Tim3) and the trans-
cription factor Batf, all genes that are up-
regulated in exhausted CD8+ T cells (Fig. 2B)
(1, 8). Moreover, the functional classes of genes

in each module were distinct on the basis of
pathway enrichment (Fig. 2C and table S2).
Thus, ChARs that distinguish naïve, effector,
memory, and exhausted CD8+ T cells are or-
ganized into state-specific modules that posi-
tively regulate functionally distinct programs of
genes.
We next sought to test whether regulatory re-

gions specific to exhausted cells could regulate
genes differentially expressed in exhausted CD8+

T cells. Persistent expression of PD-1 is a cardi-
nal feature of exhausted CD8+ T cells, but PD-1 is
also transiently expressed by effector CD8+ T cells
during acute LCMV infection (3, 8). We identified
nine ChARs within 45 kb of the Pdcd1 gene locus
(Fig. 3A) and found several that correspond to
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Fig. 3. High-resolution functional mapping of an exhaustion-specific
enhancer identifies minimal sequences that regulate PD-1. (A) ATAC-
seq tracks from CD8+ Tcells, EL4 cell line, and regulatory CD4+ Tcells (12).
Arrowheads indicate individual ChARs. (B) Cell sorting gates (top) and cor-
responding genomic polymerase chain reaction amplification for the
PD-1 enhancer region (bottom) showing proportion of wild-type (WT)
or deleted (Del) alleles in EL4 cells transfected with control (left) or
double-cut sgRNAs (right). Representative data shown from two replicates.
(C) PD-1 expression of EL4 WT (light gray) or representative enhancer-
deleted (red) single-cell clone out of 46 clones. (D) Normalized enrichment
of sgRNAs (gray symbols) within PD-1–high and PD-1–low populations at
locations shown (supplementary methods). Control nontargeting sgRNAs are

pseudo mapped with 5-bp spacing. Red symbols correspond to the 21
sgRNAs with the largest effect within the –23.8 kb enhancer, for which isogenic
cell lines were later produced. (E) Overlap of TF footprints and sgRNA activity
within the –23.8 kb enhancer. TF footprints with binding probability >0.9 in
chronic d27 are shown on top. Lines represent cut sites of top-scoring sgRNAs.
Change in PD-1 mean fluorescence intensity (MFI) relative to control guide
transfected populations for each sgRNA (red symbol, left axis); 10-bp running
average of PD-1 MFI changes caused by sgRNA activity shown in black (right
axis). (F) sgRNA cut sites within the SOX3, TBX21, and RAR motifs. (G) Log
fold enrichment of predicted TF footprints in acute d27 versus chronic d27
CD8+ Tcells (x axis) (see supplementary methods) are plotted against the
corresponding P-value (hypergeometric).
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previously described regions with enhancer ac-
tivity (–1.5 kb and –3.7 kb) (Fig. 3A) (10); these
were present in both acute and chronic infection.
We also identified an additional region (–23.8 kb)
that only showed appreciable chromatin acces-
sibility in exhausted CD8+ T cells at d8 and d27
p.i. from chronic infection (Fig. 3A).
We hypothesized that this ChAR might func-

tion as an enhancer of PD-1 that is required for
persistent, high levels of expression in exhausted
CD8+ T cells. Analysis of chromatin accessibility
at this region in previously published deoxyribo-
nuclease I–hypersensitive site–mapping (11) or
ATAC-seq data (12) showed that it was not active
in other types of hematopoietic cells, except
the murine T cell line EL4 and regulatory CD4+

T cells, both of which can constitutively express
high levels of PD-1 (10, 13) (Fig. 3A and fig. S4A).
We cloned a 781–base pair (bp) fragment corre-
sponding to this region into a reporter construct
and found that it induced a 10- to 12-fold in-
crease in reporter gene expression, confirming
that it could function as an enhancer (fig. S4B).

We then tested whether the –23.8 kb enhancer
was necessary for high-level PD-1 expression. We
used the CRISPR-Cas9 nuclease to delete a 1.2-kb
fragment at that position in EL4 cells, which
have both sustained high-level PD-1 expression
and open chromatin at that enhancer site (14, 15)
(fig. S4, C to G). In Cas9-expressing EL4 cells
transduced with a pair of single-guide RNAs
(sgRNAs) flanking the enhancer, cells with the
lowest PD-1 expression had the highest amount
of the enhancer deletion (Fig. 3B). We confirmed
this finding in single-cell clones and found that
the expression of PD-1 in clones with a biallelic
deletion of the target ChAR was significantly
lower (P > 0.0002, Mann-Whitney U test) than
expression in nondeleted clones (fig. S4, H to
J). Deletion of this region resulted in decreased
but not abrogated PD-1, suggesting that addi-
tional regulatory regions in EL4 cells are also
involved in regulating PD-1 expression (Fig. 3C).
Among all genes within 1.5 Mb of the Pdcd1 locus,
only PD-1 mRNA expression was significantly de-
creased by deletion of the –23.8 kb ChAR (fig.

S3K). This suggests that the –23.8 kb ChAR
present in exhausted, but not functional, CD8+ T
cells serves as an enhancer that is required to
maintain high levels of PD-1 expression.
We next sought to identify the functional con-

tribution of specific sequences within enhancer
regions to the regulation of PD-1 expression. We
used Cas9-mediated in situ saturation mutagen-
esis and designed all possible sgRNAs within the
–23.8 kb enhancer and eight other regulatory
sequences near the Pdcd1 locus (15, 16) (Fig. 3A).
We transduced Cas9-expressing EL4 cells with
a pool of 1754 enhancer-targeting sgRNAs, 117
sgRNAs targeting the Pdcd1 exons as positive
controls, and 200 nontargeting sgRNAs as neg-
ative controls (fig. S5, A and B). We sorted trans-
duced EL4s into populations on the basis of high
or low PD-1 expression and quantified the abun-
dance of individual sgRNAs (fig. S5C).
In comparison with nontargeting sgRNAs,

which were equivalently distributed between
PD-1–high and PD-1–low fractions, sgRNAs tar-
geting Pdcd1 exons were highly enriched in the
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Fig. 4. Exhaustion-specific epigenetic profiles in the mouse are con-
served in antigen-specific exhausted human T cells in HIV-1 infec-
tion. (A) Representative ATAC-seq tracks from naïve, HIV-1 tetramer+,
and CMV tetramer+ samples at the IFNG gene locus (top). Orthologous
regions from five mouse cell states at the IFNG locus, based on mapping of
mouse ChARs to the human genome (colored blocks, bottom). (B) Sche-
matic diagram of mouse and human comparative analysis. (C) Heat map
of average chromatin accessibility at regions orthologous to mouse naïve,

memory, and exhaustion enhancers in human samples indicated. Color scale as in Fig. 2A. (D) PD-1 and CD39 expression measured by flow cytometry in
HCV C63B tetramer+, HCV 174D tetramer+, and influenza (flu) matrix peptide (MP) tetramer+ populations from a single HCV-infected donor. (E) Viral sequences
encoding C63B and 174D epitopes. (F) Heat map of average chromatin accessibility at regions orthologous to mouse naïve, memory, and exhaustion enhancers
in human samples indicated from a single HCV-infected donor.
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PD-1–low fraction as expected (Fig. 3D and fig.
S5, D and E). sgRNAs targeting eight of the nine
regulatory regions were also significantly en-
riched in the PD-1–low fraction to varying de-
grees (P < 0.00001 to P < 0.01, see supplementary
methods), suggesting that critical sequences
affecting PD-1 expression are densely repre-
sented within each of the eight regulatory
regions. However, sgRNAs in the –35.6 kb ChAR
had no significant effect on PD-1 expression,
consistent with prior observations that this
region falls outside the CCCTC-binding factor
(CTCF)–mediated boundaries of the Pdcd1
locus (10).
We focused on sgRNAs inducing cleavage in

the –23.8 kb enhancer (fig. S5F) and found a
strong correlation between the predicted activ-
ity in a pooled setting (PD-1 high:low ratio >1 SD
below mean) and their effect on PD-1 mean fluo-
rescence intensity in individual cell lines (P =
0.0041) (fig. S5, G and H). Inspection of the pre-
dicted cleavage-site locations revealed three crit-
ical regions of the enhancer in which cleavage
markedly affected PD-1 expression (Fig. 3E, gray
shading).
We next asked whether these critical regions

in the –23.8 kb enhancer were associated with
distinct patterns of transcription factor (TF) bind-
ing in exhausted CD8+ T cells in vivo. We iden-
tified TF footprints (17) using ATAC-seq cut sites
from CD8+ T cells experiencing chronic infec-
tion, which allowed us to infer TF binding with-
in the –23.8 kb enhancer (Fig. 3E; fig. S6, A to
D; fig. S7A; and tables S3 to S6). We found that
cleavage sites of sgRNAs that reduced PD-1
expression in EL4 cells were significantly en-
riched in TF footprints found in exhausted CD8+

cells in vivo (P = 8.63 × 104, hypergeometric
test). The three TF footprints with greatest sen-
sitivity to disruption corresponded to motifs
for Sox3, T-bet (encoded by Tbx21), and retinoic
acid receptor (RAR) in exhausted CD8+ T cells
in vivo (Fig. 3F and fig. S7B). Indeed, compar-
ison of genome-wide TF footprinting between
chronic and acute infection at d27 to identify
TF motifs that showed significantly differential
inferred binding (Fig. 3G, fig. S7C, and tables
S3 and S5) confirmed that Rara binding was
significantly enriched in exhausted CD8+ T cells
(FDR = 3.14 × 10−13) compared with their func-
tional counterparts.
To test whether T cell exhaustion is also asso-

ciated with a distinct epigenetic state in human
exhausted CD8+ T cells, we analyzed global pat-
terns of chromatin accessibility in tetramer+

CD8+ T cells from four subjects with chronic
progressive HIV-1 who were not on therapy
(Fig. 4, A and B; fig. S8, A and B; and table S7).
We successfully mapped 80 to 85% of ChARs
identified in the mouse model to their human
orthologous regions (Fig. 4A, colored blocks,
and fig. S8C) (18 , 19) and found them to be
enriched for disease-associated single-nucleotide
polymorphisms (SNPs) (probabilistic identifica-
tion of causal SNPs, P < 2.77 × 10−8; hyper-
geometric test) (fig. S8D) (20) and, in particular,
immune-related National Human Genome Re-

search Institute genome-wide association study
SNPs (P < 3.70 × 10−3) (fig. S8, E to G). This
enrichment strongly suggested that mapped re-
gions corresponded to functional regulatory re-
gions within the immune system. Regions at
the Pdcd1 locus were not among those mapped
from the mouse model, as previously observed
(10), which limited our ability to detect an or-
tholog to the –23.8 kb enhancer observed in
the mouse model.
Human naïve CD8+ T cells from the majority

of donors showed greater chromatin accessi-
bility in naïve-specific regions defined in the
mouse than in memory- or exhaustion-specific
regions. In the healthy donor, CMV-specific
tetramer+ CD8+ T cells, and effector memory
cells were enriched for memory-specific regions
(Mann-Whitney U test, P = 0.01 to P < 0.0001)
(Fig. 4C and fig. S8H). In contrast, HIV-specific
tetramer+ cells from three out of the four subjects
showed significantly greater chromatin acces-
sibility in exhaustion-specific regions (Mann-
Whitney U test, P = 0.05 to P < 0.001) than in
memory-specific regions.
Finally, we confirmed these findings in a sub-

ject with chronic hepatitis C virus (HCV) infection
in whom CD8+ T cell responses to two epitopes
of HCV could be detected (Fig. 4D). Sequencing
of the HCV genome in this subject revealed
that, unlike the C63B epitope, the 174D epitope
had undergone extensive viral escape, and no
wild-type viral sequence could be detected (Fig.
4E). We found that the C63B tetramer+ cells
had a phenotype consistent with exhaustion
and showed significantly greater chromatin ac-
cessibility at exhaustion-specific regions (Mann-
Whitney U test, P = 0.01) than memory regions
(Fig. 4F). In contrast, 174D tetramer+ cells, which
were specific for the escape mutant epitope,
lacked exhaustion-specific surface markers and
showed greater chromatin accessibility in memory-
specific regions, as did influenza-specific CD8+

T cells (Mann-Whitney U test, P = 0.04) (Fig. 4F).
Thus, the state-specific pattern of chromatin
accessibility found in mouse exhausted CD8+

T cells is conserved in human exhausted CD8+

T cells.
We find that CD8+ T cell exhaustion occurs

with a broad remodeling of the enhancer land-
scape and TF binding. This suggests that ex-
hausted CD8+ T cells occupy a differentiation
state distinct from functional memory CD8+ T cells.
Identifying the plasticity of this state and whether
or how it could be reverted becomes a critical
question for immunotherapy applications. Our
data also suggest that mapping state-specific en-
hancers in exhausted T cells could enable more
precise genome editing for adoptive T cell therapy.
Genome editing of CAR-T cells to make them re-
sistant to exhaustion is an appealing concept
and has led to recent studies investigating the
deletion of the PD-1 gene locus (21, 22). Editing
exhaustion-specific enhancers (15) may provide
a more “tunable” and state-specific approach to
modulate T cell function than deleting coding
regions of genes. Functional maps of enhancers
specific to exhausted CD8+ T cells may therefore

provide a crucial step toward the rational engi-
neering of T cells for therapeutic use.
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T cell phenotype. Thus, epigenetic regulation may limit the success of immunotherapies.

memoryof exhausted T cells after immunotherapy. Although there was transcriptional rewiring, the cells never acquired a 
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epigenetic profile of exhausted T cells differs substantially from those of effector and memory T cells, suggesting that
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During cancer or chronic infection, T cells become dysfunctional, eventually acquiring an ''exhausted'' phenotype.
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